Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
N Engl J Med ; 388(7): 621-634, 2023 02 16.
Article in English | MEDLINE | ID: covidwho-2243580

ABSTRACT

BACKGROUND: Safe and effective vaccines against coronavirus disease 2019 (Covid-19) are urgently needed in young children. METHODS: We conducted a phase 1 dose-finding study and are conducting an ongoing phase 2-3 safety, immunogenicity, and efficacy trial of the BNT162b2 vaccine in healthy children 6 months to 11 years of age. We present results for children 6 months to less than 2 years of age and those 2 to 4 years of age through the data-cutoff dates (April 29, 2022, for safety and immunogenicity and June 17, 2022, for efficacy). In the phase 2-3 trial, participants were randomly assigned (in a 2:1 ratio) to receive two 3-µg doses of BNT162b2 or placebo. On the basis of preliminary immunogenicity results, a third 3-µg dose (≥8 weeks after dose 2) was administered starting in January 2022, which coincided with the emergence of the B.1.1.529 (omicron) variant. Immune responses at 1 month after doses 2 and 3 in children 6 months to less than 2 years of age and those 2 to 4 years of age were immunologically bridged to responses after dose 2 in persons 16 to 25 years of age who received 30 µg of BNT162b2 in the pivotal trial. RESULTS: During the phase 1 dose-finding study, two doses of BNT162b2 were administered 21 days apart to 16 children 6 months to less than 2 years of age (3-µg dose) and 48 children 2 to 4 years of age (3-µg or 10-µg dose). The 3-µg dose level was selected for the phase 2-3 trial; 1178 children 6 months to less than 2 years of age and 1835 children 2 to 4 years of age received BNT162b2, and 598 and 915, respectively, received placebo. Immunobridging success criteria for the geometric mean ratio and seroresponse at 1 month after dose 3 were met in both age groups. BNT162b2 reactogenicity events were mostly mild to moderate, with no grade 4 events. Low, similar incidences of fever were reported after receipt of BNT162b2 (7% among children 6 months to <2 years of age and 5% among those 2 to 4 years of age) and placebo (6 to 7% among children 6 months to <2 years of age and 4 to 5% among those 2 to 4 years of age). The observed overall vaccine efficacy against symptomatic Covid-19 in children 6 months to 4 years of age was 73.2% (95% confidence interval, 43.8 to 87.6) from 7 days after dose 3 (on the basis of 34 cases). CONCLUSIONS: A three-dose primary series of 3-µg BNT162b2 was safe, immunogenic, and efficacious in children 6 months to 4 years of age. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04816643.).


Subject(s)
BNT162 Vaccine , COVID-19 , Adolescent , Child , Child, Preschool , Humans , Infant , Young Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/adverse effects , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Immunoglobulin G/blood , Immunoglobulin G/immunology , Vaccines/adverse effects , Vaccines/therapeutic use , Immunogenicity, Vaccine , Treatment Outcome , Vaccine Efficacy
2.
N Engl J Med ; 388(3): 214-227, 2023 01 19.
Article in English | MEDLINE | ID: covidwho-2186511

ABSTRACT

BACKGROUND: The emergence of immune-escape variants of severe acute respiratory syndrome coronavirus 2 warrants the use of sequence-adapted vaccines to provide protection against coronavirus disease 2019. METHODS: In an ongoing phase 3 trial, adults older than 55 years who had previously received three 30-µg doses of the BNT162b2 vaccine were randomly assigned to receive 30 µg or 60 µg of BNT162b2, 30 µg or 60 µg of monovalent B.1.1.529 (omicron) BA.1-adapted BNT162b2 (monovalent BA.1), or 30 µg (15 µg of BNT162b2 + 15 µg of monovalent BA.1) or 60 µg (30 µg of BNT162b2 + 30 µg of monovalent BA.1) of BA.1-adapted BNT162b2 (bivalent BA.1). Primary objectives were to determine superiority (with respect to 50% neutralizing titer [NT50] against BA.1) and noninferiority (with respect to seroresponse) of the BA.1-adapted vaccines to BNT162b2 (30 µg). A secondary objective was to determine noninferiority of bivalent BA.1 to BNT162b2 (30 µg) with respect to neutralizing activity against the ancestral strain. Exploratory analyses assessed immune responses against omicron BA.4, BA.5, and BA.2.75 subvariants. RESULTS: A total of 1846 participants underwent randomization. At 1 month after vaccination, bivalent BA.1 (30 µg and 60 µg) and monovalent BA.1 (60 µg) showed neutralizing activity against BA.1 superior to that of BNT162b2 (30 µg), with NT50 geometric mean ratios (GMRs) of 1.56 (95% confidence interval [CI], 1.17 to 2.08), 1.97 (95% CI, 1.45 to 2.68), and 3.15 (95% CI, 2.38 to 4.16), respectively. Bivalent BA.1 (both doses) and monovalent BA.1 (60 µg) were also noninferior to BNT162b2 (30 µg) with respect to seroresponse against BA.1; between-group differences ranged from 10.9 to 29.1 percentage points. Bivalent BA.1 (either dose) was noninferior to BNT162b2 (30 µg) with respect to neutralizing activity against the ancestral strain, with NT50 GMRs of 0.99 (95% CI, 0.82 to 1.20) and 1.30 (95% CI, 1.07 to 1.58), respectively. BA.4-BA.5 and BA.2.75 neutralizing titers were numerically higher with 30-µg bivalent BA.1 than with 30-µg BNT162b2. The safety profile of either dose of monovalent or bivalent BA.1 was similar to that of BNT162b2 (30 µg). Adverse events were more common in the 30-µg monovalent-BA.1 (8.5%) and 60-µg bivalent-BA.1 (10.4%) groups than in the other groups (3.6 to 6.6%). CONCLUSIONS: The candidate monovalent or bivalent omicron BA.1-adapted vaccines had a safety profile similar to that of BNT162b2 (30 µg), induced substantial neutralizing responses against ancestral and omicron BA.1 strains, and, to a lesser extent, neutralized BA.4, BA.5, and BA.2.75 strains. (Funded by BioNTech and Pfizer; ClinicalTrials.gov number, NCT04955626.).


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Vaccines, Combined , Humans , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/adverse effects , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/genetics , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Vaccination , Vaccines, Combined/therapeutic use , Middle Aged
3.
N Engl J Med ; 387(20): 1865-1876, 2022 11 17.
Article in English | MEDLINE | ID: covidwho-2096907

ABSTRACT

BACKGROUND: The BNT162b2 vaccine against coronavirus disease 2019 (Covid-19) has been authorized for use in children 5 to 11 years of age and adolescents 12 to 17 years of age but in different antigen doses. METHODS: We assessed the real-world effectiveness of the BNT162b2 vaccine against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among children and adolescents in Qatar. To compare the incidence of SARS-CoV-2 infection in the national cohort of vaccinated participants with the incidence in the national cohort of unvaccinated participants, we conducted three matched, retrospective, target-trial, cohort studies - one assessing data obtained from children 5 to 11 years of age after the B.1.1.529 (omicron) variant became prevalent and two assessing data from adolescents 12 to 17 years of age before the emergence of the omicron variant (pre-omicron study) and after the omicron variant became prevalent. Associations were estimated with the use of Cox proportional-hazards regression models. RESULTS: Among children, the overall effectiveness of the 10-µg primary vaccine series against infection with the omicron variant was 25.7% (95% confidence interval [CI], 10.0 to 38.6). Effectiveness was highest (49.6%; 95% CI, 28.5 to 64.5) right after receipt of the second dose but waned rapidly thereafter and was negligible after 3 months. Effectiveness was 46.3% (95% CI, 21.5 to 63.3) among children 5 to 7 years of age and 16.6% (95% CI, -4.2 to 33.2) among those 8 to 11 years of age. Among adolescents, the overall effectiveness of the 30-µg primary vaccine series against infection with the omicron variant was 30.6% (95% CI, 26.9 to 34.1), but many adolescents had been vaccinated months earlier. Effectiveness waned over time since receipt of the second dose. Effectiveness was 35.6% (95% CI, 31.2 to 39.6) among adolescents 12 to 14 years of age and 20.9% (95% CI, 13.8 to 27.4) among those 15 to 17 years of age. In the pre-omicron study, the overall effectiveness of the 30-µg primary vaccine series against SARS-CoV-2 infection among adolescents was 87.6% (95% CI, 84.0 to 90.4) and waned relatively slowly after receipt of the second dose. CONCLUSIONS: Vaccination in children was associated with modest, rapidly waning protection against omicron infection. Vaccination in adolescents was associated with stronger, more durable protection, perhaps because of the larger antigen dose. (Funded by Weill Cornell Medicine-Qatar and others.).


Subject(s)
BNT162 Vaccine , COVID-19 , Vaccine Efficacy , Adolescent , Child , Humans , BNT162 Vaccine/administration & dosage , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Qatar/epidemiology , Retrospective Studies , SARS-CoV-2 , Child, Preschool , Vaccine Efficacy/statistics & numerical data
4.
JAMA ; 328(14): 1427-1437, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2084928

ABSTRACT

Importance: Evidence describing the incidence of severe COVID-19 illness following vaccination and booster with BNT162b2, mRNA-1273, and Ad26.COV2.S vaccines is needed, particularly for high-risk populations. Objective: To describe the incidence of severe COVID-19 illness among a cohort that received vaccination plus a booster vaccine dose. Design, Setting, and Participants: Retrospective cohort study of adults receiving care at Veterans Health Administration facilities across the US who received a vaccination series plus 1 booster against SARS-CoV-2, conducted from July 1, 2021, to May 30, 2022. Patients were eligible if they had received a primary care visit in the prior 2 years and had documented receipt of all US Food and Drug Administration-authorized doses of the initial mRNA vaccine or viral vector vaccination series after December 11, 2020, and a subsequent documented booster dose between July 1, 2021, and April 29, 2022. The analytic cohort consisted of 1 610 719 participants. Exposures: Receipt of any combination of mRNA-1273 (Moderna), BNT162b2 (Pfizer-BioNTech), and Ad26.COV2.S (Janssen/Johnson & Johnson) primary vaccination series and a booster dose. Main Outcomes and Measures: Outcomes were breakthrough COVID-19 (symptomatic infection), hospitalization with COVID-19 pneumonia and/or death, and hospitalization with severe COVID-19 pneumonia and/or death. A subgroup analysis of nonoverlapping populations included those aged 65 years or older, those with high-risk comorbid conditions, and those with immunocompromising conditions. Results: Of 1 610 719 participants, 1 100 280 (68.4%) were aged 65 years or older and 132 243 (8.2%) were female; 1 133 785 (70.4%) had high-risk comorbid conditions, 155 995 (9.6%) had immunocompromising conditions, and 1 467 879 (91.1%) received the same type of mRNA vaccine (initial series and booster). Over 24 weeks, 125.0 (95% CI, 123.3-126.8) per 10 000 persons had breakthrough COVID-19, 8.9 (95% CI, 8.5-9.4) per 10 000 persons were hospitalized with COVID-19 pneumonia or died, and 3.4 (95% CI, 3.1-3.7) per 10 000 persons were hospitalized with severe pneumonia or died. For high-risk populations, incidence of hospitalization with COVID-19 pneumonia or death was as follows: aged 65 years or older, 1.9 (95% CI, 1.4-2.6) per 10 000 persons; high-risk comorbid conditions, 6.7 (95% CI, 6.2-7.2) per 10 000 persons; and immunocompromising conditions, 39.6 (95% CI, 36.6-42.9) per 10 000 persons. Subgroup analyses of patients hospitalized with COVID-19 pneumonia or death by time after booster demonstrated similar incidence estimates among those aged 65 years or older and with high-risk comorbid conditions but not among those with immunocompromising conditions. Conclusions and Relevance: In a US cohort of patients receiving care at Veterans Health Administration facilities during a period of Delta and Omicron variant predominance, there was a low incidence of hospitalization with COVID-19 pneumonia or death following vaccination and booster with any of BNT162b2, mRNA-1273, or Ad26.COV2.S vaccines.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , Ad26COVS1 , BNT162 Vaccine , COVID-19 , Immunization, Secondary , 2019-nCoV Vaccine mRNA-1273/therapeutic use , Ad26COVS1/therapeutic use , Adult , Aged , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/mortality , COVID-19/prevention & control , Female , Hospitalization/statistics & numerical data , Humans , Immunization, Secondary/statistics & numerical data , Incidence , Male , Pneumonia/epidemiology , Pneumonia/etiology , Retrospective Studies , SARS-CoV-2 , United States/epidemiology , Vaccination , Veterans Health Services/statistics & numerical data
7.
BMC Neurol ; 22(1): 185, 2022 May 18.
Article in English | MEDLINE | ID: covidwho-1951107

ABSTRACT

BACKGROUND: Since the beginning of the COVID-19 pandemic and development of new vaccines, the issue of post-vaccination exacerbation or manifestation of demyelinating central nervous system (CNS) disorders has gained increasing attention. CASE PRESENTATION: We present a case of a 68-year-old woman previously diagnosed with multiple sclerosis (MS) since the 1980s who suffered a rapidly progressive severe sensorimotor paraparesis with loss of bladder and bowel control due to an acute longitudinal extensive transverse myelitis (LETM) after immunization with the mRNA Pfizer-BioNTech COVID-19 vaccine. Detection of Aquaporin-4-antibodies (AQP4) in both serum and CSF led to diagnosis of AQP4-antibody positive neuromyelitis optica spectrum disorder (NMOSD). Treatment with intravenous corticosteroids and plasmapheresis led to a slight improvement of the patient's symptoms. CONCLUSIONS: Pathogenic mechanisms of post-vaccination occurrence of NMOSD are still unknown. However, cases like this should make aware of rare neurological disorders manifesting after vaccination and potentially contribute to improvement of management of vaccinating patients with inflammatory CNS disorders in the future. So far two cases of AQP4-antibody positive NMOSD have been reported in association with viral vector COVID-19 vaccines. To our knowledge, we report the first case of AQP4-antibody positive NMOSD after immunization with an mRNA COVID-19-vaccine.


Subject(s)
BNT162 Vaccine , COVID-19 , Multiple Sclerosis , Myelitis, Transverse , Neuromyelitis Optica , Aged , Aquaporin 4/blood , Aquaporin 4/cerebrospinal fluid , Autoantibodies/blood , Autoantibodies/cerebrospinal fluid , BNT162 Vaccine/adverse effects , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Disease Progression , Female , Humans , Multiple Sclerosis/blood , Multiple Sclerosis/cerebrospinal fluid , Multiple Sclerosis/complications , Myelitis, Transverse/chemically induced , Myelitis, Transverse/diagnosis , Myelitis, Transverse/etiology , Neuromyelitis Optica/blood , Neuromyelitis Optica/cerebrospinal fluid , Neuromyelitis Optica/diagnosis , Neuromyelitis Optica/etiology , Pandemics , RNA, Messenger , Vaccination/adverse effects
8.
N Engl J Med ; 387(6): 525-532, 2022 08 11.
Article in English | MEDLINE | ID: covidwho-1947717

ABSTRACT

BACKGROUND: Since it was first identified in early November 2021, the B.1.1.529 (omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread quickly and replaced the B.1.617.2 (delta) variant as the dominant variant in many countries. Data on the real-world effectiveness of vaccines against the omicron variant in children are lacking. METHODS: In a study conducted from January 21, 2022, through April 8, 2022, when the omicron variant was spreading rapidly, we analyzed data on children in Singapore who were 5 to 11 years of age. We assessed the incidences of all reported SARS-CoV-2 infections (confirmed on polymerase-chain-reaction [PCR] assay, rapid antigen testing, or both), SARS-CoV-2 infections confirmed on PCR assay, and coronavirus disease 2019 (Covid-19)-related hospitalizations among unvaccinated, partially vaccinated (≥1 day after the first dose of vaccine and up to 6 days after the second dose), and fully vaccinated children (≥7 days after the second dose). Poisson regression was used to estimate vaccine effectiveness from the incidence rate ratio of outcomes. RESULTS: A total of 255,936 children were included in the analysis. Among unvaccinated children, the crude incidence rates of all reported SARS-CoV-2 infections, PCR-confirmed SARS-CoV-2 infections, and Covid-19-related hospitalizations were 3303.5, 473.8, and 30.0 per 1 million person-days, respectively. Among partially vaccinated children, vaccine effectiveness was 13.6% (95% confidence interval [CI], 11.7 to 15.5) against all SARS-CoV-2 infections, 24.3% (95% CI, 19.5 to 28.9) against PCR-confirmed SARS-CoV-2 infection, and 42.3% (95% CI, 24.9 to 55.7) against Covid-19-related hospitalization; in fully vaccinated children, vaccine effectiveness was 36.8% (95% CI, 35.3 to 38.2), 65.3% (95% CI, 62.0 to 68.3), and 82.7% (95% CI, 74.8 to 88.2), respectively. CONCLUSIONS: During a period when the omicron variant was predominant, BNT162b2 vaccination reduced the risks of SARS-CoV-2 infection and Covid-19-related hospitalization among children 5 to 11 years of age.


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , BNT162 Vaccine/pharmacology , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19/virology , Child , Child, Preschool , Hospitalization/statistics & numerical data , Humans , SARS-CoV-2/drug effects , SARS-CoV-2/genetics , Singapore/epidemiology , Vaccine Efficacy/statistics & numerical data , Viral Vaccines/pharmacology , Viral Vaccines/therapeutic use
9.
N Engl J Med ; 387(3): 227-236, 2022 07 21.
Article in English | MEDLINE | ID: covidwho-1908352

ABSTRACT

BACKGROUND: Limited evidence is available on the real-world effectiveness of the BNT162b2 vaccine against coronavirus disease 2019 (Covid-19) and specifically against infection with the omicron variant among children 5 to 11 years of age. METHODS: Using data from the largest health care organization in Israel, we identified a cohort of children 5 to 11 years of age who were vaccinated on or after November 23, 2021, and matched them with unvaccinated controls to estimate the vaccine effectiveness of BNT162b2 among newly vaccinated children during the omicron wave. Vaccine effectiveness against documented severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and symptomatic Covid-19 was estimated after the first and second vaccine doses. The cumulative incidence of each outcome in the two study groups through January 7, 2022, was estimated with the use of the Kaplan-Meier estimator, and vaccine effectiveness was calculated as 1 minus the risk ratio. Vaccine effectiveness was also estimated in age subgroups. RESULTS: Among 136,127 eligible children who had been vaccinated during the study period, 94,728 were matched with unvaccinated controls. The estimated vaccine effectiveness against documented infection was 17% (95% confidence interval [CI], 7 to 25) at 14 to 27 days after the first dose and 51% (95% CI, 39 to 61) at 7 to 21 days after the second dose. The absolute risk difference between the study groups at days 7 to 21 after the second dose was 1905 events per 100,000 persons (95% CI, 1294 to 2440) for documented infection and 599 events per 100,000 persons (95% CI, 296 to 897) for symptomatic Covid-19. The estimated vaccine effectiveness against symptomatic Covid-19 was 18% (95% CI, -2 to 34) at 14 to 27 days after the first dose and 48% (95% CI, 29 to 63) at 7 to 21 days after the second dose. We observed a trend toward higher vaccine effectiveness in the youngest age group (5 or 6 years of age) than in the oldest age group (10 or 11 years of age). CONCLUSIONS: Our findings suggest that as omicron was becoming the dominant variant, two doses of the BNT162b2 messenger RNA vaccine provided moderate protection against documented SARS-CoV-2 infection and symptomatic Covid-19 in children 5 to 11 years of age. (Funded by the European Union through the VERDI project and others.).


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , Child , Child, Preschool , Humans , Israel/epidemiology , SARS-CoV-2/drug effects , Vaccine Efficacy/statistics & numerical data , Vaccines, Synthetic/therapeutic use , mRNA Vaccines/therapeutic use
10.
JAMA ; 327(22): 2210-2219, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1905741

ABSTRACT

Importance: Efficacy of 2 doses of the BNT162b2 COVID-19 vaccine (Pfizer-BioNTech) against COVID-19 was high in pediatric trials conducted before the SARS-CoV-2 Omicron variant emerged. Among adults, estimated vaccine effectiveness (VE) of 2 BNT162b2 doses against symptomatic Omicron infection was reduced compared with prior variants, waned rapidly, and increased with a booster. Objective: To evaluate the association of symptomatic infection with prior vaccination with BNT162b2 to estimate VE among children and adolescents during Omicron variant predominance. Design, Setting, and Participants: A test-negative, case-control analysis was conducted using data from 6897 pharmacy-based, drive-through SARS-CoV-2 testing sites across the US from a single pharmacy chain in the Increasing Community Access to Testing platform. This analysis included 74 208 tests from children 5 to 11 years of age and 47 744 tests from adolescents 12 to 15 years of age with COVID-19-like illness who underwent SARS-CoV-2 nucleic acid amplification testing from December 26, 2021, to February 21, 2022. Exposures: Two BNT162b2 doses 2 weeks or more before SARS-CoV-2 testing vs no vaccination for children; 2 or 3 doses 2 weeks or more before testing vs no vaccination for adolescents (who are recommended to receive a booster dose). Main Outcomes and Measures: Symptomatic infection. The adjusted odds ratio (OR) for the association of prior vaccination and symptomatic SARS-CoV-2 infection was used to estimate VE: VE = (1 - OR) × 100%. Results: A total of 30 999 test-positive cases and 43 209 test-negative controls were included from children 5 to 11 years of age, as well as 22 273 test-positive cases and 25 471 test-negative controls from adolescents 12 to 15 years of age. The median age among those with included tests was 10 years (IQR, 7-13); 61 189 (50.2%) were female, 75 758 (70.1%) were White, and 29 034 (25.7%) were Hispanic/Latino. At 2 to 4 weeks after dose 2, among children, the adjusted OR was 0.40 (95% CI, 0.35-0.45; estimated VE, 60.1% [95% CI, 54.7%-64.8%]) and among adolescents, the OR was 0.40 (95% CI, 0.29-0.56; estimated VE, 59.5% [95% CI, 44.3%-70.6%]). During month 2 after dose 2, among children, the OR was 0.71 (95% CI, 0.67-0.76; estimated VE, 28.9% [95% CI, 24.5%-33.1%]) and among adolescents, the OR was 0.83 (95% CI, 0.76-0.92; estimated VE, 16.6% [95% CI, 8.1%-24.3%]). Among adolescents, the booster dose OR 2 to 6.5 weeks after the dose was 0.29 (95% CI, 0.24-0.35; estimated VE, 71.1% [95% CI, 65.5%-75.7%]). Conclusions and Relevance: Among children and adolescents, estimated VE for 2 doses of BNT162b2 against symptomatic infection was modest and decreased rapidly. Among adolescents, the estimated effectiveness increased after a booster dose.


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Vaccine Efficacy , Adolescent , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19/virology , COVID-19 Testing , COVID-19 Vaccines/therapeutic use , Child , Child, Preschool , Female , Humans , Immunization, Secondary , Male , Vaccination
11.
Science ; 377(6603): eabq1841, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1891726

ABSTRACT

The Omicron, or Pango lineage B.1.1.529, variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) carries multiple spike mutations with high transmissibility and partial neutralizing antibody (nAb) escape. Vaccinated individuals show protection against severe disease, often attributed to primed cellular immunity. We investigated T and B cell immunity against B.1.1.529 in triple BioNTech BNT162b2 messenger RNA-vaccinated health care workers (HCWs) with different SARS-CoV-2 infection histories. B and T cell immunity against previous variants of concern was enhanced in triple-vaccinated individuals, but the magnitude of T and B cell responses against B.1.1.529 spike protein was reduced. Immune imprinting by infection with the earlier B.1.1.7 (Alpha) variant resulted in less durable binding antibody against B.1.1.529. Previously infection-naïve HCWs who became infected during the B.1.1.529 wave showed enhanced immunity against earlier variants but reduced nAb potency and T cell responses against B.1.1.529 itself. Previous Wuhan Hu-1 infection abrogated T cell recognition and any enhanced cross-reactive neutralizing immunity on infection with B.1.1.529.


Subject(s)
B-Lymphocytes , BNT162 Vaccine , COVID-19 , Immunization, Secondary , SARS-CoV-2 , T-Lymphocytes , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , Cross Reactions , Humans , Mice , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , T-Lymphocytes/immunology
12.
N Engl J Med ; 387(1): 21-34, 2022 07 07.
Article in English | MEDLINE | ID: covidwho-1890356

ABSTRACT

BACKGROUND: The protection conferred by natural immunity, vaccination, and both against symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection with the BA.1 or BA.2 sublineages of the omicron (B.1.1.529) variant is unclear. METHODS: We conducted a national, matched, test-negative, case-control study in Qatar from December 23, 2021, through February 21, 2022, to evaluate the effectiveness of vaccination with BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna), natural immunity due to previous infection with variants other than omicron, and hybrid immunity (previous infection and vaccination) against symptomatic omicron infection and against severe, critical, or fatal coronavirus disease 2019 (Covid-19). RESULTS: The effectiveness of previous infection alone against symptomatic BA.2 infection was 46.1% (95% confidence interval [CI], 39.5 to 51.9). The effectiveness of vaccination with two doses of BNT162b2 and no previous infection was negligible (-1.1%; 95% CI, -7.1 to 4.6), but nearly all persons had received their second dose more than 6 months earlier. The effectiveness of three doses of BNT162b2 and no previous infection was 52.2% (95% CI, 48.1 to 55.9). The effectiveness of previous infection and two doses of BNT162b2 was 55.1% (95% CI, 50.9 to 58.9), and the effectiveness of previous infection and three doses of BNT162b2 was 77.3% (95% CI, 72.4 to 81.4). Previous infection alone, BNT162b2 vaccination alone, and hybrid immunity all showed strong effectiveness (>70%) against severe, critical, or fatal Covid-19 due to BA.2 infection. Similar results were observed in analyses of effectiveness against BA.1 infection and of vaccination with mRNA-1273. CONCLUSIONS: No discernable differences in protection against symptomatic BA.1 and BA.2 infection were seen with previous infection, vaccination, and hybrid immunity. Vaccination enhanced protection among persons who had had a previous infection. Hybrid immunity resulting from previous infection and recent booster vaccination conferred the strongest protection. (Funded by Weill Cornell Medicine-Qatar and others.).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19 , Immunity, Innate , Immunization , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273/immunology , 2019-nCoV Vaccine mRNA-1273/therapeutic use , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , Case-Control Studies , Humans , Immunity, Innate/immunology , Immunization, Secondary , Recurrence , SARS-CoV-2/immunology , Vaccination
13.
Br J Haematol ; 198(4): 668-679, 2022 08.
Article in English | MEDLINE | ID: covidwho-1874397

ABSTRACT

Allogeneic haematopoietic stem cell transplant (HSCT) recipients remain at high risk of adverse outcomes from coronavirus disease 2019 (COVID-19) and emerging variants. The optimal prophylactic vaccine strategy for this cohort is not defined. T cell-mediated immunity is a critical component of graft-versus-tumour effect and in determining vaccine immunogenicity. Using validated anti-spike (S) immunoglobulin G (IgG) and S-specific interferon-gamma enzyme-linked immunospot (IFNγ-ELIspot) assays we analysed response to a two-dose vaccination schedule (either BNT162b2 or ChAdOx1) in 33 HSCT recipients at ≤2 years from transplant, alongside vaccine-matched healthy controls (HCs). After two vaccines, infection-naïve HSCT recipients had a significantly lower rate of seroconversion compared to infection-naïve HCs (25/32 HSCT vs. 39/39 HCs no responders) and had lower S-specific T-cell responses. The HSCT recipients who received BNT162b2 had a higher rate of seroconversion compared to ChAdOx1 (89% vs. 74%) and significantly higher anti-S IgG titres (p = 0.022). S-specific T-cell responses were seen after one vaccine in HCs and HSCT recipients. However, two vaccines enhanced S-specific T-cell responses in HCs but not in the majority of HSCT recipients. These data demonstrate limited immunogenicity of two-dose vaccination strategies in HSCT recipients, bolstering evidence of the need for additional boosters and/or alternative prophylactic measures in this group.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hematopoietic Stem Cell Transplantation , Age Factors , Antibodies, Viral/immunology , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , Bone Marrow Transplantation/adverse effects , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , COVID-19 Vaccines/therapeutic use , ChAdOx1 nCoV-19/immunology , ChAdOx1 nCoV-19/therapeutic use , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Immunity, Cellular/drug effects , Immunity, Cellular/immunology , Immunity, Humoral/drug effects , Immunity, Humoral/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Seroconversion , Transplantation, Homologous/adverse effects , Vaccination/adverse effects
14.
N Engl J Med ; 386(23): 2201-2212, 2022 06 09.
Article in English | MEDLINE | ID: covidwho-1864786

ABSTRACT

BACKGROUND: Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) provides natural immunity against reinfection. Recent studies have shown waning of the immunity provided by the BNT162b2 vaccine. The time course of natural and hybrid immunity is unknown. METHODS: Using the Israeli Ministry of Health database, we extracted data for August and September 2021, when the B.1.617.2 (delta) variant was predominant, on all persons who had been previously infected with SARS-CoV-2 or who had received coronavirus 2019 vaccine. We used Poisson regression with adjustment for confounding factors to compare the rates of infection as a function of time since the last immunity-conferring event. RESULTS: The number of cases of SARS-CoV-2 infection per 100,000 person-days at risk (adjusted rate) increased with the time that had elapsed since vaccination with BNT162b2 or since previous infection. Among unvaccinated persons who had recovered from infection, this rate increased from 10.5 among those who had been infected 4 to less than 6 months previously to 30.2 among those who had been infected 1 year or more previously. Among persons who had received a single dose of vaccine after previous infection, the adjusted rate was low (3.7) among those who had been vaccinated less than 2 months previously but increased to 11.6 among those who had been vaccinated at least 6 months previously. Among previously uninfected persons who had received two doses of vaccine, the adjusted rate increased from 21.1 among those who had been vaccinated less than 2 months previously to 88.9 among those who had been vaccinated at least 6 months previously. CONCLUSIONS: Among persons who had been previously infected with SARS-CoV-2 (regardless of whether they had received any dose of vaccine or whether they had received one dose before or after infection), protection against reinfection decreased as the time increased since the last immunity-conferring event; however, this protection was higher than that conferred after the same time had elapsed since receipt of a second dose of vaccine among previously uninfected persons. A single dose of vaccine after infection reinforced protection against reinfection.


Subject(s)
COVID-19 , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Humans , Immunity, Innate , Reinfection/immunology , Reinfection/prevention & control , SARS-CoV-2 , Time Factors , Viral Vaccines/immunology , Viral Vaccines/therapeutic use
15.
Thyroid ; 32(5): 505-514, 2022 05.
Article in English | MEDLINE | ID: covidwho-1852890

ABSTRACT

Background: Thyroiditis and Graves' disease have been reported after coronavirus disease 2019 (COVID-19) vaccination. We evaluated the risks of adverse events after COVID-19 vaccination among patients treated for hypothyroidism. Methods: In this retrospective population-based cohort study of Hong Kong Hospital Authority electronic health records with the Department of Health vaccination records linkage, levothyroxine (LT4) users were categorized into unvaccinated, vaccinated with BNT162b2 (mRNA vaccine), or CoronaVac (inactivated vaccine) between February 23, 2021, and September 9, 2021. Study outcomes were dosage reduction or escalation in LT4, emergency department (ED) visit, unscheduled hospitalization, adverse events of special interest (AESI) according to the World Health Organization's Global Advisory Committee on Vaccine Safety, and all-cause mortality. Inverse probability of treatment weighting for propensity score was applied to balance baseline patient characteristics among the three groups. Hazard ratios (HR) were estimated using Cox regression models. Patients were observed from the index date until the occurrence of study outcome, death, or censored on September 30, 2021, whichever came first. Results: In total, 47,086 LT4 users were identified (BNT162b2: n = 12,310; CoronaVac: n = 11,353; and unvaccinated: n = 23,423). COVID-19 vaccination was not associated with increased risks of LT4 dosage reduction (BNT162b2: HR = 0.971 [confidence interval; CI 0.892-1.058]; CoronaVac: HR = 0.968 [CI 0.904-1.037]) or escalation (BNT162b2: HR = 0.779 [CI 0.519-1.169]; CoronaVac: HR = 0.715 [CI 0.481-1.062]). Besides, COVID-19 vaccination was not associated with a higher risk of ED visits (BNT162b2: HR = 0.944 [CI 0.700-1.273]; CoronaVac: HR = 0.851 [CI 0.647-1.120]) or unscheduled hospitalization (BNT162b2: HR = 0.905 [CI 0.539-1.520]; CoronaVac: HR = 0.735 [CI 0.448-1.207]). There were two (0.016%) deaths and six (0.062%) AESI recorded for BNT162b2 recipients, and one (0.009%) and three (0.035%) for CoronaVac recipients, respectively. Conclusions: BNT162b2 or CoronaVac vaccination is not associated with unstable thyroid status or an increased risk of adverse outcomes among patients treated for hypothyroidism in general. These reassuring data should encourage them to get vaccinated against COVID-19 for protection from potentially worse COVID-19-related outcomes.


Subject(s)
COVID-19 Vaccines , COVID-19 , Hypothyroidism , BNT162 Vaccine/adverse effects , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/therapeutic use , Cohort Studies , Humans , Hypothyroidism/chemically induced , Hypothyroidism/drug therapy , Hypothyroidism/etiology , RNA, Messenger , Retrospective Studies , SARS-CoV-2 , Vaccination/adverse effects , Vaccines, Inactivated/adverse effects , Vaccines, Inactivated/therapeutic use , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/therapeutic use , mRNA Vaccines/adverse effects , mRNA Vaccines/therapeutic use
17.
Cell Rep Med ; 3(5): 100631, 2022 05 17.
Article in English | MEDLINE | ID: covidwho-1799660

ABSTRACT

Two doses of Pfizer/BioNTech BNT162b2 mRNA vaccine elicit robust severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-neutralizing antibodies with frequent adverse events. Here, by applying a high-dimensional immune profiling on 92 vaccinees, we identify six vaccine-induced immune dynamics that correlate with the amounts of neutralizing antibodies, the severity of adverse events, or both. The early dynamics of natural killer (NK)/monocyte subsets (CD16+ NK cells, CD56high NK cells, and non-classical monocytes), dendritic cell (DC) subsets (DC3s and CD11c- Axl+ Siglec-6+ [AS]-DCs), and NKT-like cells are revealed as the distinct cell correlates for neutralizing-antibody titers, severity of adverse events, and both, respectively. The cell correlates for neutralizing antibodies or adverse events are consistently associated with elevation of interferon gamma (IFN-γ)-inducible chemokines, but the chemokine receptors CCR2 and CXCR3 are expressed in distinct manners between the two correlates: vaccine-induced expression on the neutralizing-antibody correlate and constitutive expression on the adverse-event correlate. The finding may guide vaccine strategies that balance immunogenicity and reactogenicity.


Subject(s)
BNT162 Vaccine , COVID-19 , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine/adverse effects , BNT162 Vaccine/immunology , BNT162 Vaccine/therapeutic use , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , COVID-19 Vaccines/immunology , COVID-19 Vaccines/therapeutic use , Humans , SARS-CoV-2/genetics , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use , mRNA Vaccines/adverse effects , mRNA Vaccines/immunology , mRNA Vaccines/therapeutic use
18.
N Engl J Med ; 386(17): 1603-1614, 2022 04 28.
Article in English | MEDLINE | ID: covidwho-1788353

ABSTRACT

BACKGROUND: With large waves of infection driven by the B.1.1.529 (omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), alongside evidence of waning immunity after the booster dose of coronavirus disease 2019 (Covid-19) vaccine, several countries have begun giving at-risk persons a fourth vaccine dose. METHODS: To evaluate the early effectiveness of a fourth dose of the BNT162b2 vaccine for the prevention of Covid-19-related outcomes, we analyzed data recorded by the largest health care organization in Israel from January 3 to February 18, 2022. We evaluated the relative effectiveness of a fourth vaccine dose as compared with that of a third dose given at least 4 months earlier among persons 60 years of age or older. We compared outcomes in persons who had received a fourth dose with those in persons who had not, individually matching persons from these two groups with respect to multiple sociodemographic and clinical variables. A sensitivity analysis was performed with the use of parametric Poisson regression. RESULTS: The primary analysis included 182,122 matched pairs. Relative vaccine effectiveness in days 7 to 30 after the fourth dose was estimated to be 45% (95% confidence interval [CI], 44 to 47) against polymerase-chain-reaction-confirmed SARS-CoV-2 infection, 55% (95% CI, 53 to 58) against symptomatic Covid-19, 68% (95% CI, 59 to 74) against Covid-19-related hospitalization, 62% (95% CI, 50 to 74) against severe Covid-19, and 74% (95% CI, 50 to 90) against Covid-19-related death. The corresponding estimates in days 14 to 30 after the fourth dose were 52% (95% CI, 49 to 54), 61% (95% CI, 58 to 64), 72% (95% CI, 63 to 79), 64% (95% CI, 48 to 77), and 76% (95% CI, 48 to 91). In days 7 to 30 after a fourth vaccine dose, the difference in the absolute risk (three doses vs. four doses) was 180.1 cases per 100,000 persons (95% CI, 142.8 to 211.9) for Covid-19-related hospitalization and 68.8 cases per 100,000 persons (95% CI, 48.5 to 91.9) for severe Covid-19. In sensitivity analyses, estimates of relative effectiveness against documented infection were similar to those in the primary analysis. CONCLUSIONS: A fourth dose of the BNT162b2 vaccine was effective in reducing the short-term risk of Covid-19-related outcomes among persons who had received a third dose at least 4 months earlier. (Funded by the Ivan and Francesca Berkowitz Family Living Laboratory Collaboration at Harvard Medical School and Clalit Research Institute.).


Subject(s)
BNT162 Vaccine , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , SARS-CoV-2 , BNT162 Vaccine/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Humans , Immunization, Secondary/statistics & numerical data , Israel/epidemiology , Middle Aged , RNA, Messenger , Treatment Outcome
19.
N Engl J Med ; 386(20): 1899-1909, 2022 05 19.
Article in English | MEDLINE | ID: covidwho-1768968

ABSTRACT

BACKGROUND: Spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) B.1.1.529 (omicron) variant, which led to increased U.S. hospitalizations for coronavirus disease 2019 (Covid-19), generated concern about immune evasion and the duration of protection from vaccines in children and adolescents. METHODS: Using a case-control, test-negative design, we assessed vaccine effectiveness against laboratory-confirmed Covid-19 leading to hospitalization and against critical Covid-19 (i.e., leading to receipt of life support or to death). From July 1, 2021, to February 17, 2022, we enrolled case patients with Covid-19 and controls without Covid-19 at 31 hospitals in 23 states. We estimated vaccine effectiveness by comparing the odds of antecedent full vaccination (two doses of BNT162b2 messenger RNA vaccine) at least 14 days before illness among case patients and controls, according to time since vaccination for patients 12 to 18 years of age and in periods coinciding with circulation of B.1.617.2 (delta) (July 1, 2021, to December 18, 2021) and omicron (December 19, 2021, to February 17, 2022) among patients 5 to 11 and 12 to 18 years of age. RESULTS: We enrolled 1185 case patients (1043 [88%] of whom were unvaccinated, 291 [25%] of whom received life support, and 14 of whom died) and 1627 controls. During the delta-predominant period, vaccine effectiveness against hospitalization for Covid-19 among adolescents 12 to 18 years of age was 93% (95% confidence interval [CI], 89 to 95) 2 to 22 weeks after vaccination and was 92% (95% CI, 80 to 97) at 23 to 44 weeks. Among adolescents 12 to 18 years of age (median interval since vaccination, 162 days) during the omicron-predominant period, vaccine effectiveness was 40% (95% CI, 9 to 60) against hospitalization for Covid-19, 79% (95% CI, 51 to 91) against critical Covid-19, and 20% (95% CI, -25 to 49) against noncritical Covid-19. During the omicron period, vaccine effectiveness against hospitalization among children 5 to 11 years of age was 68% (95% CI, 42 to 82; median interval since vaccination, 34 days). CONCLUSIONS: BNT162b2 vaccination reduced the risk of omicron-associated hospitalization by two thirds among children 5 to 11 years of age. Although two doses provided lower protection against omicron-associated hospitalization than against delta-associated hospitalization among adolescents 12 to 18 years of age, vaccination prevented critical illness caused by either variant. (Funded by the Centers for Disease Control and Prevention.).


Subject(s)
BNT162 Vaccine , COVID-19 , SARS-CoV-2 , Adolescent , BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , COVID-19 Vaccines/therapeutic use , Case-Control Studies , Child , Child, Preschool , Critical Illness/therapy , Hospitalization , Humans , Vaccine Efficacy , Vaccines, Synthetic/therapeutic use , mRNA Vaccines/therapeutic use
20.
Lancet ; 399(10328): 924-944, 2022 03 05.
Article in English | MEDLINE | ID: covidwho-1768606

ABSTRACT

BACKGROUND: Knowing whether COVID-19 vaccine effectiveness wanes is crucial for informing vaccine policy, such as the need for and timing of booster doses. We aimed to systematically review the evidence for the duration of protection of COVID-19 vaccines against various clinical outcomes, and to assess changes in the rates of breakthrough infection caused by the delta variant with increasing time since vaccination. METHODS: This study was designed as a systematic review and meta-regression. We did a systematic review of preprint and peer-reviewed published article databases from June 17, 2021, to Dec 2, 2021. Randomised controlled trials of COVID-19 vaccine efficacy and observational studies of COVID-19 vaccine effectiveness were eligible. Studies with vaccine efficacy or effectiveness estimates at discrete time intervals of people who had received full vaccination and that met predefined screening criteria underwent full-text review. We used random-effects meta-regression to estimate the average change in vaccine efficacy or effectiveness 1-6 months after full vaccination. FINDINGS: Of 13 744 studies screened, 310 underwent full-text review, and 18 studies were included (all studies were carried out before the omicron variant began to circulate widely). Risk of bias, established using the risk of bias 2 tool for randomised controlled trials or the risk of bias in non-randomised studies of interventions tool was low for three studies, moderate for eight studies, and serious for seven studies. We included 78 vaccine-specific vaccine efficacy or effectiveness evaluations (Pfizer-BioNTech-Comirnaty, n=38; Moderna-mRNA-1273, n=23; Janssen-Ad26.COV2.S, n=9; and AstraZeneca-Vaxzevria, n=8). On average, vaccine efficacy or effectiveness against SARS-CoV-2 infection decreased from 1 month to 6 months after full vaccination by 21·0 percentage points (95% CI 13·9-29·8) among people of all ages and 20·7 percentage points (10·2-36·6) among older people (as defined by each study, who were at least 50 years old). For symptomatic COVID-19 disease, vaccine efficacy or effectiveness decreased by 24·9 percentage points (95% CI 13·4-41·6) in people of all ages and 32·0 percentage points (11·0-69·0) in older people. For severe COVID-19 disease, vaccine efficacy or effectiveness decreased by 10·0 percentage points (95% CI 6·1-15·4) in people of all ages and 9·5 percentage points (5·7-14·6) in older people. Most (81%) vaccine efficacy or effectiveness estimates against severe disease remained greater than 70% over time. INTERPRETATION: COVID-19 vaccine efficacy or effectiveness against severe disease remained high, although it did decrease somewhat by 6 months after full vaccination. By contrast, vaccine efficacy or effectiveness against infection and symptomatic disease decreased approximately 20-30 percentage points by 6 months. The decrease in vaccine efficacy or effectiveness is likely caused by, at least in part, waning immunity, although an effect of bias cannot be ruled out. Evaluating vaccine efficacy or effectiveness beyond 6 months will be crucial for updating COVID-19 vaccine policy. FUNDING: Coalition for Epidemic Preparedness Innovations.


Subject(s)
COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Immunization Schedule , Immunization, Secondary , Ad26COVS1/therapeutic use , BNT162 Vaccine/therapeutic use , Humans , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL